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Fig. 1: RayFronts is a real-time semantic mapping system that enables fine-grained scene understanding both within and beyond
the depth perception range. Given an example mission through multi-modal queries to locate red buildings & a water tower, RayFronts
enables: (1) Significant search volume reduction for online exploration (as shown by the red and blue cones at the top) and localization
of far-away entities (e.g., the water & radio tower). (2) Online semantic mapping, where prior semantic ray frontiers evolve into semantic
voxels as entities enter the depth perception range (e.g., the red buildings query on the right side). (3) Multi-objective fine-grained open-set
querying supporting various open-set prompts such as “Road Cracks”, “Metal Stairs”, and “Green Dense Canopy”.

Abstract— Open-set semantic mapping is crucial for open-
world robots. Current mapping approaches either are lim-
ited by the depth range or only map beyond-range entities
in constrained settings, where overall they fail to combine
within-range and beyond-range observations. Furthermore,
these methods make a trade-off between fine-grained semantics
and efficiency. We introduce RayFronts, a unified repre-
sentation that enables both dense and beyond-range efficient
semantic mapping. RayFronts encodes task-agnostic open-
set semantics to both in-range voxels and beyond-range rays
encoded at map boundaries, empowering the robot to reduce
search volumes significantly and make informed decisions both
within & beyond sensory range, while running at 8.84 Hz
on an Orin AGX. Benchmarking the within-range semantics
shows that RayFronts’s fine-grained image encoding provides
1.34× zero-shot 3D semantic segmentation performance while
improving throughput by 16.5×. Traditionally, online mapping
performance is entangled with other system components, com-
plicating evaluation. We propose a planner-agnostic evaluation
framework that captures the utility for online beyond-range
search and exploration, and show RayFronts reduces search
volume 2.2× more efficiently than the closest online baselines.
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I. INTRODUCTION

Open-set semantic mapping is essential for robotic systems
to reason, search, and navigate in open-world environments.
The task requires capturing both fine-grained local details
and distant beyond-range semantic cues in real-time. For
instance, as shown in Fig. 1, an aerial or ground robot
may need to localize the water or radio towers over 100
meters beyond its depth perception capability, as well as
locate any hazards (road cracks) or interesting structures
along the way (red building). This work explores what the
most effective semantic mapping system would be to capture
this information to imbue the robot with the ability to reason
within and beyond depth sensing limitations.

Although there is a growing body of literature on open-
set metric semantic mapping [1]–[5], these methods focus
primarily on offline mapping for downstream usage in limited
environments ignoring efficiency and depth-sensing limita-
tions. Such representations cannot guide the robot in search
and exploration tasks as they provide no information about
the unmapped region. Other works change the way semantics
are typically encoded in a map (point clouds, voxels, and
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bounding boxes) to representations that can guide exploration
(i.e semantic frontiers [6], [7], and semantic poses [8]).
However, existing semantic frontier maps are limited to
2D indoor environments and have limited semantics due to
whole-image encoding [6] or using closed-set models [7],
whereas semantic poses [8] lack fine-grained reconstructions
and can only recognize prominent objects in an image.

In this context, we explore the question, “How to de-
sign an efficient online mapping representation that
facilitates fine-grained scene understanding, and be
aware of beyond-range semantic entities?” We introduce
RayFronts, a semantic map representation which seam-
lessly integrates traditional within-depth mapping with ray-
based representations, facilitating both dense mapping within
observed depth ranges and perception beyond them. Unlike
conventional representations truncated at the depth range,
multi-directional semantic ray frontiers retain coarse-grained
far-range information, enabling downstream planners (e.g.,
object-search) to reduce their search volume significantly.
Additionally, to assess the utility of the proposed representa-
tion, we construct a planner-agnostic benchmark and propose
a new metric to measure how effectively an online mapping
strategy reduces the search space for fast object localization
and exploration. Finally, to avoid image level encoding and
expensive pipelines, we introduce a novel image encoder
that achieves state-of-the-art performance on zero-shot 3D
semantic segmentation enabling a computationally efficient,
open-world, and deployable 3D online mapping system.

Our key contributions are as follows:
C1: Unified 3D Map Representation for Within-Depth
and Beyond-Depth Perception: We develop the first-of-its-
kind open-set semantic ray frontier 3D map, which enables
robots to reason in open environments achieving up to 1.85x
mIoU in offline zero-shot performance, and are 2.2x more
efficient in reducing search volume in online mapping than
the closest offline & online baselines respectively.
C2: Planner-Agnostic Online Semantic Mapping Eval-
uation Framework: We showcase that online semantic
mapping systems can be evaluated on their fundamental
utility for exploration, without being tightly coupled with
a planner, by developing a metric that assesses “correctly
reduced search volume”.
C3: Efficient real-time open-set online mapping system:
can run end to end at 8.84 Hz on an ORIN AGX and our
efficient dense vision-language encoder is 16.5x faster than
the closest baseline and achieves state-of-the-art on open-
vocab zero-shot 3D semantic segmentation mIoU.

II. RELATED WORK

A. Dense 2D Open-Set Semantics

The rapid rise of foundation models [9] has spearheaded
progress in tasks requiring fine-grained open-set concepts
which are hard to capture with a fixed taxonomy of semantic
classes [10], [11]. CLIP [12] and its subsequent variants such
as SIGLIP [13] have shown impressive alignment between
abstract textual concepts and images. These Visual Lan-
guage Models (VLMs) initially aligned textual descriptions

and images as a whole and not to particular regions or
pixels. Subsequently, follow-up work based on supervised
and unsupervised regimes has attempted to address this
issue [14]. A recurring theme in these methods is the trade-
off between efficiency and accuracy, with the most perfor-
mant approaches often using multiple foundation models like
DINOv2 [10], Grounding DINO [15], and SAM [11]. This
is not optimal for online real-world deployment and hence
we explore the applicability of RADIO [16], a foundation
model aligned with various dense visual foundation models.
While RADIO’s language alignment is to the image as a
whole, we find that employing a simple attention trick [17]
with its SIGLIP adapter enables us to achieve state-of-the-art
pixel-level language alignment and real-time performance on
embedded hardware.

B. Offline & Bounded Open-Set Semantic Mapping

Traditional semantic mapping systems have relied on
learning-based methods to detect and segment a fixed set
of concepts, with performance limited by vocabulary size
and training distribution [18]–[24]. With the rise of dense
2D open-set semantics, interest has grown in open-vocab
semantic mapping systems using representations like point
clouds, voxels, and scene graphs [25]. These systems have
shown strong open-world capabilities for navigation, manip-
ulation, and scene understanding [1]–[5], [26]–[28]. How-
ever, most focus on offline database maps and lack online
utility for robotics, with many design choices making real-
time deployment infeasible. To address this, we introduce a
computationally efficient, fast, and deployable 3D mapping
system for online scene understanding.

C. Online & Unbounded Open-Set Semantic Mapping

While offline and bounded semantic mapping has excelled
in indoor scenes, it struggles with outdoor, unbounded, and
unstructured environments, where limited depth perception
becomes a challenge. An effective online semantic mapping
system must support both efficient exploration and fine-
grained scene understanding. VLFM [6] addresses this by
encoding semantics on 2D frontiers for object goal naviga-
tion, but it is limited to a single object at a time and only
works in indoor settings. Similarly, Embedding Pose Graph
(EPG) [8] encodes semantics into rays from pose nodes, but
lacks fine-grained mapping and condenses the entire image
into one feature vector, risking the loss of subtle details.

In contrast, we propose a novel representation combining
semantic voxels with ray-based frontiers, capturing multiple
viewing directions and open-set features. This approach
enables efficient online search and rough triangulation of dis-
tant objects, allowing us to capture both in-range and beyond-
range semantic entities. Our synergy of metric-map-based
semantic voxels and direction-based ray frontiers supports
fine-grained scene understanding and efficient exploration.

III. METHOD

We present RayFronts, a unified 3D semantic mapping
system for multi-modal open-set semantic querying of both
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Fig. 2: Overview of our online mapping system, RayFronts is designed for multi-objective & multi-modal open-set querying of
both in-range and beyond-range semantic entities. Given posed RGB-D images, we first extract dense features with our fast language-
aligned image encoder. Then, posed depth information and features are used to construct a semantic voxel map for in-range queries. In
parallel, RayFronts also maintains a VDB-based occupancy map to generate frontiers, which are further associated with multi-directional
semantic rays. These semantic ray fronts enable us to perform beyond-range querying of open-set concepts in the unobserved region.

in-range and beyond-range semantic entities. RayFronts
maintains a semantic voxel map Vt containing voxel coor-
dinates and semantic features for within-range entities, an
occupancy VDB map Ot , a set of frontiers Ft denoting
subsampled boundary voxels between observed and unob-
served spaces, and semantic ray fronts Rt , a ray-based
representation on the frontiers, which contains features for
beyond-range semantic reasoning.
RayFronts operates in four steps: (1) extracting dense,

language-aligned features from RGB input through our ef-
ficient encoding pipeline, (2) fusing within-range featurized
points into a sparse semantic voxel map, (3) maintaining an
occupancy map for frontier computation and semantic voxel
pruning, and (4) ray casting beyond-range semantics onto
frontiers to semantically reason beyond the observed map.
Our system is optimized for parallel computing and online
mapping, leveraging PyTorch tensors for Vt ,Ft ,Rt on the
GPU and OpenVDB [29] for Ot on the CPU. This design
ensures efficient querying, seamless feature integration, and
adaptability to evolving environments. The pipeline and
outputs of RayFronts are illustrated in Fig. 2.

A. Extracting Dense Language-Aligned Features

There has been a rapid growth of methods that extract
dense language aligned features from RGB images. However,
existing methods fall short by (1) lacking generalization due
to limited supervision, (2) sacrificing efficiency with multi-
model multi-stage pipelines, or (3) prioritizing efficiency
and generalization at the cost of segmentation quality. In
this work, we adopt RADIO [16], a VFM that distills key
features from CLIP [12], DINOv2 [10], and SAM [11]. This
integration enhances feature representation and segmentation
performance. However, since RADIO leverages vanilla ViT
[30], it struggles with fine-grained localization of visual
features, a critical challenge in semantic scene understanding.
To address this, we integrate the explicit spatial attention

mechanism proposed by NACLIP [17] and modify the
RADIO encoder accordingly. Specifically, we augment the
attention layer of the final ViT block by introducing a locality
constraint via an unnormalized multivariate Gaussian kernel
centered around each patch essentially pushing the model to
attend to its neighboring patches and improving locality.

To densely align the RADIO feature space with language,
we explore the available pre-trained MLP-based adaptor
heads provided by RADIO. Simply following RADIO’s
original distillation approach– projecting spatial features onto
CLIP or SIGLIP space using their respective adapters–yields
subpar performance. Instead, we use the SIGLIP summary
feature adapter to project spatial features to the SIGLIP
CLS token space, thus resulting in a spatially consistent
and language-aligned feature map and observe significant
performance improvements over existing methods.

B. Semantic Voxels for Dense Within-Depth Queries
Given a pose Pt ∈ SE3 and depth map Dt ∈ RH×W ,

we initialize a voxel grid retaining only points within the
frustrum, yielding Qt . We transform the points Qt into the
camera frame and classify its occupancy based on depth Dt .
For each occupied point, we find the associated feature via
nearest-neighbor interpolation yielding P local

t = {(pi, fi)}M
i=1

where pi ∈ R3 are point coordinates and fi ∈ R3+D+1 (3 for
RGB, D is feature dimension, and 1 for the hit count). Local
updates are accumulated into a buffer of m frames before
being voxelized at resolution α and integrated into the global
map V .

Feature Fusion and Aggregation: Rather than complex
fusion methods used in [2], [3], we employ a simple weighted
average, where each voxel’s hit count serves as the weight
when fusing features within the same voxel. To achieve this,
we concatenate coordinate and feature tensors of accumu-
lated local updates P local

t with those of global voxel map
Vt . A parallel scatter-reduce operation fuses features at the
same discretized coordinates into a single voxel.



C. Occupancy Mapping for Frontiers and Pruning

To represent occupancy map Ot efficiently, we employ
OpenVDB [29], recently used in modern 3D frontier-based
exploration works [31]–[33] for its sparse tree representation
and multi-resolution capability. Following standard practice,
we store log-odds occupancy o j in a signed byte. To better
tolerate dynamic environments and to avoid overflow, we
limit probocc(o j) to lower and upper limits. Fig. 2 shows the
OpenVDB map with large free voxels showing the multi-
resolution aspect of the occupancy representation.

Pruning Semantic Voxels: When accumulating voxels
over long distances and time periods, odometry drifts and
dynamic objects can introduce inconsistencies, not to men-
tion the growing memory consumption. To mitigate this, we
prune invalid semantic voxels by querying the occupancy
map Ot and removing those with occupancy below 0.5.

D. Finding the “Fronts”: Computing 3D Frontiers

We identify frontiers by iterating over all free observed
voxels using efficient OpenVDB iterators and examining
their neighbors. A voxel is considered a frontier if its
neighbors meet the minimum thresholds for unobserved
(minunobsrv), occupied (minocc), and free (min f ree) counts,
allowing us to emphasize frontiers near surfaces or open
space as needed. To reduce density, we subsample the
frontier map using a coarser voxel grid of size β . Fine-grid
frontiers are accumulated into a coarser grid, and cells with
enough frontiers remain as frontiers.

E. Semantic Ray Frontiers for Beyond-Depth Mapping

Need for richer frontiers: Existing semantic frontier
methods have fundamentally constrained beyond-range se-
mantic encoding, where only a single object can be pursued
at a time due to feature collisions from distinct objects
observed through the same frontier. To enable multi-object
semantic guidance for search and exploration, we transition
from conventional semantic frontiers Fsem = {(pk, fk)}F

k=1
to semantic ray frontiers Rsem = {(or,θr,φr, fr)}R

r=1 , where
or is ray origin, θr ∈ [−π,π) and φr ∈ [0,π) are azimuthal
and zenith angles, and fr are semantic features. This shift
drastically enhances the mapping system by allowing effi-
cient storage of rich multi-object semantics with minimal
feature collisions, enabling rough triangulation of object
locations, and reducing the search space volume needed for
exploration. We discuss the ray mapping process (observe,
associate, discretize & accumulate) and how rays are pruned
and propagated below.

Observe: To identify out-of-range regions in the feature
map Ft we compute a boolean mask Mt ∈ RH×W from the
depth Dt (obtained via stereo, LiDAR, or monocular depth
estimation). The mask encompasses either +∞ values from
depth sensors or far low-certainty values. Mt is eroded to
prevent semantic leakage at object boundaries, and used to
select the semantic pixels to propagate as rays R local

t =
{(or,dr, fr)}Ht

r=0 where or ∈R3 is the ray and camera origin,
dr ∈R3 is the normalized direction vector, and fr represents
semantic features.

Associate (Matching Rays to Frontiers): In the presence
of depth information, rather than keeping rays at the robot’s
origin as in [8], we leverage the mapped area to push rays
closer to their observed entities, improving localization. For
each semantic ray (or,dr, fr), we select a frontier from the
candidate set Ft+1 through a two-step filtering process. First,
we prune frontiers by (1) removing those not in front of the
ray (2) computing the shortest orthogonal distance dortho be-
tween the ray and frontiers, discarding those where dortho > β

(exceeding the frontier grid cell size), and (3) calculating the
distance from ray origin or to frontier origin p, obtaining
dorig and removing frontiers where dorig > 4×depth range.

Next, for the remaining k candidate frontiers, we compute
a cost function

dcost =(
dortho

max({dr
ortho}k

r=0)
+

dorig

max({dr
orig}k

r=0)
)/2,dcost ∈ [0,1]

(1)
We select the frontier with the minimum dcost as the best
match. We qualitatively find that utilizing both dortho and
dorig improves results and prevents distant frontiers from
receiving noisy semantics.

For further refinement, we optionally apply ray tracing,
marching each ray through the occupancy map Ot+1 until
it reaches its assigned frontier or encounters occupied or
unobserved (possibly occupied) cells. At this stage, each
semantic ray is associated with a frontier, updating its origin
(or) to the corresponding frontier origin p. Since we lack
depth information about the underlying semantic entity, we
maintain the ray’s direction dr when shifting its origin.

Discretize and Accumulate (“Ray Binning”): Similar
to voxelization techniques, we organize semantic rays into
angle bins with a resolution of ψ degrees. The normalized
ray directions dr are converted to spherical angles using:
θr = atan2(d1

r ,d
0
r ), φr = acos(d2

r ) where atan2 is the four-
quadrant inverse tangent. We then discretize these angles and
merge rays that correspond to the same frontier and the same
angle bin from both the local update R local

t and the global set
Rt . We use 1−dcost for weighing the features while merging,
assigning lower trust to high-cost associations. This yields
the updated ray-frontier Rt+1.

Pushing the ray fronts onward: Semantic ray frontiers
must be updated as new areas are mapped. After computing
the frontier update Ft+1, we use a voxel grid to perform a set
intersection between all ray origins and frontier origins, sim-
ilar to pruning voxels, and remove rays no longer associated
with active frontiers. If ray tracing is enabled, removed rays
are added back to the ray accumulation buffer to be re-cast
in the next iteration. This preserves previously observed se-
mantics that may no longer be directly visible as the frontier
shifts (e.g., from a side view). However, without ray tracing,
removed rays would continue to propagate indefinitely, so we
disable the behavior under that setting. In our experiments,
we use ray tracing unless otherwise stated.

IV. EXPERIMENTAL SETUP

A good online mapping system should (1) intelligently
guide the robot toward regions of interest in any environment,
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Fig. 3: An illustration of our proposed planner-agnostic metric
(Search Cut Volume Recall) for open-world online search
benchmarking. Intuitively, the metric captures “How much of the
search volume is eliminated correctly?” An optimal mapper should
promptly and accurately reduce the search space, enabling fast
multi-object localization and exploration.

eliminating irrelevant volumes early, (2) accurately capture
fine-grained open-set semantics within a metric map, and
(3) do so efficiently. In this section, we first introduce our
proposed online mapping evaluation framework, which as-
sesses the utility of a mapping system in guiding exploration
without a planner in-the-loop, and introduce competitive
baseline representations. We then present our extensive of-
fline map evaluation following established protocols. Finally,
we conduct a deployability and throughput analysis.

A. Planner-Agnostic Online Semantic Mapping Evaluation

Dataset: Originally designed to challenge visual SLAM
with large, cluttered, long-tail objects in indoor and out-
door environments, TartanAirV2 [34] serves as a stress
test for our representation. To simulate scenarios with
severely limited depth, we choose four large outdoor
scenes AbandonedCableday, Factory, Downtown
and ConstructionSiteOvercast where bounding
boxes span approximately 8 million m3 with a 50m range
cutoff. We generate ground truth occupancy (defining the
scene volume) and a semantic label map at 1-meter voxel
resolution from the provided posed RGBD input.
Baselines: There are no established online mapping base-
lines for 3D open-world environments. Therefore, we take
inspiration from existing works and design the following
baselines, keeping the encoder fixed to isolate the impact
of our mapping approach:

• Semantic Poses (Sem Pose): Emulates EPG [8] by
using global encoding for the image, resulting in a single
ray per frame located at the robot origin.

• Semantic Voxels (Sem Voxels): Subsumes representa-
tions that encode only within-range semantics [2]–[4].

• Semantic Frontiers: Emulates in 3D the 2D approaches
that paint frontiers with semantics [6], [7]. We recognize
that there are two ways semantic frontiers can be
interpreted; (1) As a spherical region encompassing the
semantic entity (i.e Spherical Sem Fronts), or (2) as a
single ray pointing away from the observed region (i.e
Unidirectional Sem Fronts). We evaluate both.

We define search volume as the unmapped region unless
further evidence is provided. Ray-based approaches cast
search cones while spherical sem fronts define a sphere
volume extending to the nearest frontier. Multiple search
volumes are summed in a voxel grid, counts are normalized,
and thresholded at 0.05 to get the final search volume for
a class. For Unidirectional Sem Fronts, frontier directions
are inferred using the occupancy map Ot by computing a
weighted combination of all directions around a frontier in
a 3x3x3 window where mapped voxels have a weight of -1
(Pushing away) and unmapped voxels have a weight of +1
(Pulling toward).
Evaluation Protocol: We ask the question “Can an online
semantic mapping system’s utility for search and exploration
be assessed independently of specific planners ?” Yes, the
key is examining how accurately and efficiently the map
constrains the search space. Traditional mapping metrics
such as mIoU, mAcc, F1 measure fine-grained semantic
localization but overlook search volume efficiency, as they
ignore true negatives. In search and exploration, a high true
negative rate in the unobserved region reduces wasted search
time. Therefore, for beyond-range search volume estimation,
we introduce a novel metric below, and to evaluate within-
range fine-grained online performance, we use the area under
the mIoU-time curve.
Search Cut Volume Recall Metric: Our proposed metric,
shown in Figure 3, measures how accurately and efficiently a
mapping system cuts search volume. The intuitive definition
is to compute total unmapped volume volunmapped and sub-
tract the search volume from it, however to avoid punishing
true positives, we define search cut volume (SCV) as:

SCV = 1−
FPunmapped

volunmapped
, SCV ∈ [0,1] (2)

To temper the metric against incorrectly cutting down vol-
ume, we compute Recall in the unmapped region and mul-
tiply it with SCV yielding the Search Cut Volume Recall
(SCVR) metric:

SCV R = SCV ∗
T Punmapped

FNunmapped +T Punmapped
, SCV R ∈ [0,1]

(3)
The SCVR metric is robust to both naive cases (1) not
constraining the search volume, or (2) constraining it to 0
volume, yielding 0 for both. For an aggregate, we compute
the area under the SCVR-time curve, stopping time for each
class when 50% of it has entered the mapped region. To
further assess the robustness of RayFronts, we vary depth
sensing range at 0m, 10m, and 20m.

B. Offline 3D Open-Vocabulary Semantic Segmentation

Datasets: We follow prior work [2]–[4] and evaluate
on Replica (office[0-4], room[0-2]) and ScanNet
(scene[0011,0050,0231,0378,0518]). In line with
previous protocols, we report results while ignoring back-
ground classes (“floor”, “wall”, “ceiling”, “door”, “win-
dow”). However, we additionally evaluate across all classes
to demonstrate our ability to handle background seamlessly.



TABLE I: Online & Unbounded Semantic Mapping Benchmarking on TartanAirV2 [34]. Ranking shown as first , second , and third .

0m Depth (AUC) 10m Depth (AUC) 20m Depth (AUC)

Methods mIoU(%) SCV(%) Recall(%) SCVR(%) mIoU(%) SCV(%) Recall(%) SCVR(%) mIoU(%) SCV(%) Recall(%) SCVR(%)

Sem Poses 0.00 11.37 91.91 4.02 – – – – – – – –
Sem Voxels – – – – 20.49 0.00 100.00 0.00 13.03 0.00 100.00 0.00
Spherical Sem Fronts – – – – 20.49 18.00 82.35 0.40 13.03 13.33 87.02 0.41
Unidirectional Sem Fronts – – – – 20.49 16.12 85.93 3.15 13.03 11.58 89.54 2.07
RayFronts (Ours) 0.00 36.59 75.37 16.27 20.49 22.94 81.15 7.08 13.03 14.32 88.69 4.56
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Fig. 4: RayFronts consistently surpasses baselines for online semantic mapping. Two query scenarios are shown: (1) querying for a
prominent object (i.e Building) that enters depth range, and (2) a distant object (i.e Chimney) that remains beyond range. Through unified
dense voxel mapping, and beyond-range semantic ray frontiers, RayFronts sets the upper-bound in both scenarios.

Moreover, to showcase RayFronts’s effectiveness in out-
door, unstructured, “in-the-wild” environments, we further
evaluate on the TartanAirV2 [34] scenes referenced in IV-A
excluding methods that cannot function outdoors.

Baselines: We compare our method with two categories of
approaches: (1) vision-language representations that create
3D semantic maps, namely, ConceptFusion [2], Concept-
Graphs [4], and HOV-SG [3]; and (2) zero-shot semantic
segmentation encoders, namely, NACLIP [17] and Trident
[35]. We extend the latter encoder-based methods to 3D using
the same projection and fusion method as our system.

Evaluation Protocol: We follow standard open-vocabulary
semantic segmentation evaluation protocols. We generate
3D segmentations by running HOV-SG and ConceptGraph
code ensuring an accurate representation of their scene
graph method. For all others, we generate segmentations
by computing the cosine similarity between the embedded
feature and the class-name text embedding, making a voxel
prediction if its softmax probability exceeds 0.1. We encode
class names using each method’s specified templates. For our
approach, we follow NACLIP and use 80 templates [17],
with a prompt denoising [36] threhsold of 0.5 to suppress
irrelevant classes. We also apply k-NN matching (k=5)
following HOV-SG [3] protocol, assigning each GT voxel the
majority label. All baselines use the ViT-L model architecture
for consistency. We resize images to 480x640, apply a frame
skip of 10, 5cm voxels for Replica and ScanNet and 1m
voxels for TartanAir.

V. RESULTS & DISCUSSION

A. Online Semantic Mapping

Table I summarizes online performance of the five meth-
ods in their respective operating ranges. We observe that
RayFronts excels and is the upper bound across depth
ranges. Sem Poses fails to capture any fine-grained recon-
structions scoring 0 mIoU-AUC, while Sem Voxels fails to
provide any information about the unmapped region scoring
0 SCVR-AUC. At 0 depth range, RayFronts attaches
dense semantic rays at each pose as opposed to the global
encoding scheme employed by Sem Poses. This allows us
to encode non-prominent objects seamlessly and results in
a ∼ 4× SCVR-AUC than Sem Poses. This observation is
illustrated in Fig. 4 where for a simple prominent object such
as “building”, both Sem Poses and RayFronts perform
similarly. However, for a more distant object like “chimney”,
Sem Poses fails to capture its semantics entirely. At higher
depth ranges, we observe that RayFronts consistently out-
performs semantic frontier baselines at ∼ 2.2× the SCVR-
AUC. We attribute this to (1) less semantic collisions as
distinct objects are unlikely to be fused in the same ray unlike
semantic frontiers which can have many collisions, (2) better
preservation of the angle at which the semantic entity was
observed from, and (3) allowing each frontier to have mul-
tiple rays attached, increasing the density of beyond-range
semantics. RayFronts is superior to all baselines across
depth ranges empowering both fine-grained localization
and beyond-range guidance.



TABLE II: Offline 3D Semantic Segmentation Benchmarking on Indoor Datasets.

Replica [37] ScanNet [38]

Without Background With Background Without Background With Background

Methods mIoU(%) f-mIoU(%) Acc(%) mIoU(%) f-mIoU(%) Acc(%) mIoU(%) f-mIoU(%) Acc(%) mIoU(%) f-mIoU(%) Acc(%)

ConceptFusion [2] 21.07 31.51 35.65 20.38 35.75 41.58 21.76 26.71 34.13 18.57 23.06 28.77
ConceptGraphs [4] 11.63 16.61 19.80 11.72 21.35 28.28 21.62 24.32 31.04 20.83 23.61 35.80
HOV-SG [3] 16.93 31.45 34.74 19.29 30.64 35.17 26.79 36.05 44.17 23.48 28.92 38.52
NACLIP-3D [17] 20.37 35.08 47.47 15.30 16.98 26.23 31.66 39.03 51.65 22.32 24.32 33.46
Trident-3D [35] 21.30 43.34 54.79 20.63 38.53 50.31 29.97 37.62 51.06 24.80 27.77 38.43
RayFronts (Ours) 39.37 62.03 68.80 27.73 43.37 54.45 41.29 46.42 56.76 32.29 39.04 49.15

TABLE III: Offline 3D Semantic Segmentation Benchmarking on
an Outdoor Dataset (TartanAirV2 [34]).

Methods mIoU (%) f-mIoU (%) Acc (%)

ConceptFusion [2] 5.84 32.78 39.76
NACLIP-3D [17] 9.66 40.82 54.10
Trident-3D [35] 9.86 43.56 55.34
RayFronts (Ours) 13.22 43.43 57.26

B. Offline 3D Semantic Segmentation

Table II provides a detailed comparison of the performance
between our framework and other zero-shot approaches,
outlined in Section IV-B. RayFronts consistently outper-
forms the baselines in mIoU, and achieves SOTA per-
formance beating the next best baselines by +18.07% and
+9.63% mIoU on Replica and Scannet, respectively, ex-
cluding background. RayFronts is also able to handle
background seamlessly with its single-forward pass approach
while segment-and-encode approaches fall short.

For outdoor in-the-wild performance on TartanAirV2, Ta-
ble III shows that RayFronts exceeds the performance of
the baselines by 3.36% mIoU. While Trident-3D serves as a
close second to our approach and achieves a slightly higher
f-mIoU on TartanAirV2 by a marginal 0.13%, it does so at
the cost of integrating multiple foundational models into their
pipeline, which significantly reduces efficiency—an essential
factor for online semantic mapping.

C. Encoder & Mapping Throughput Analysis

To assess deployability, we run RayFronts on an
NVIDIA Jetson AGX Orin and perform a quantitative com-
parison of image encoder throughput shown in Fig. 5. Our
mapping system achieves SOTA performance in 3D open-set
semantic segmentation with 1.34x the mIoU of Trident while
being 16.5x faster, running at 17.5 Hz, and with only 46% of
the parameters. While NACLIP has similar throughput, we
surpass it by a significant 1.81x in mIoU. ConceptFusion’s
0.03 Hz throughput makes it impractical for real-time use.

Furthermore, we test the end-to-end throughput of
RayFronts on a real-world outdoor scene using pre-
recorded data from a mobile ground robot. We use a res-
olution of 224x224, 30cm voxel size, and the base encoder
model, while compressing features to top 100 PCA compo-
nents (retaining ∼ 80% variance), and disabling ray-tracing.
RayFronts runs real-time at 8.84 Hz on Orin AGX.
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Fig. 5: RayFronts provides state-of-the-art mIoU & 17.5 Hz
throughput on an AGX Orin. It surpasses Trident with 1.34x
higher mIoU and a 16.5x speedup, while achieving 1.81x higher
mIoU than NACLIP, which operates at a similar throughput.

D. Qualitative Real-World Study

To evaluate RayFronts in unbounded, open-world set-
tings, we record a run through an unstructured fire train-
ing facility with a Zed-X camera. As shown in Fig. 1,
RayFronts accurately reconstructs fine-grained details
(e.g., “road cracks”) while detecting far-range objects (e.g.,
“water tower”), demonstrating that RayFronts empowers
robots within and beyond depth-sensing limitations in
open-world environments.

VI. CONCLUSION

We present RayFronts, a real-time semantic mapping
system for multi-modal open-set scene understanding for
both within- and beyond-range mapping. Our key insight, se-
mantic ray frontiers, enables open-set queries about observa-
tions beyond depth mapping by associating beyond-depth ray
features with the map’s frontiers. This allows RayFronts
to significantly reduce search volumes while retaining fine-
grained within-range scene understanding. RayFronts im-
proves open-set image encoding with an efficient language-
aligned encoder, and introduces a new planner-agnostic met-
ric for open-world search. We achieve state-of-the-art results
in 3D open-set semantic segmentation, strong performance in
online mapping, and efficient encoder throughput. Our future
work aims to include instance differentiation in RayFronts
and planning integration to facilitate online exploration.



LIMITATIONS

While RayFronts is the upper-bound of the online map-
ping baselines in correct search volume reduction, it also has
the highest memory consumption. However, RayFronts
can be tuned down by reducing ray angle bins down until a
single bin (becoming “semantic frontiers”), or reducing depth
range down until 0, giving the flexibility to achieve the best
trade-off for an application.
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APPENDIX

A1. CONTRIBUTION STATEMENT

Omar Alama led the research and conceptual design, de-
veloped the mapping codebase and online/offline evaluation
scripts, wrote major sections of the paper, and created figures,
online mapping tables, and videos.

Avigyan Bhattacharya developed the RayFronts encoder
code, implemented the ScanNet data loader, and ported
Trident for evaluation. Conducted extensive evaluations of
multiple offline mapping baselines and wrote the correspond-
ing sections and appendix figures.

Haoyang He ported ConceptFusion and NACLIP for eval-
uation, performed extensive evaluations of multiple offline
mapping baselines, and conducted throughput analyses on
the ORIN AGX. Also contributed to writing the correspond-
ing sections.

Seungchan Kim engaged in early discussions, developed
the TartanAirV2 data loader, and played a key role in refining
the paper writing.

Yuheng Qiu engaged in early discussions, explored
datasets for evaluation, and provided writing feedback.

Wenshan Wang participated in early discussions and
provided feedback on research direction and paper writing.

Cherie Ho deployed RayFronts on the Orin AGX, assisted
in collecting test data across various robot platforms, and
contributed extensively to paper writing, coordination, and
the design of figures and video.

Nikhil Keetha was heavily involved in brainstorming,
discussions, and the conceptual design of the mapping, en-
coding, and evaluation frameworks. Contributed significantly
to paper writing, as well as figures and video design.

Sebastian Scherer shaped the research area, engaged
in discussions and brainstorming, and provided valuable
feedback on writing, figures, and video.

A2. ONLINE SEMANTIC MAPPING VISUALIZATIONS

Fig. A.1 shows illustrations of the different baselines
mentioned in Section IV-A. The top left part of the figure
highlights how RayFronts can avoid semantic feature col-
lisions (the case where different semantic features are forced
to be fused together) by utilizing multiple rays to describe
the different semantic entities. Whereas semantic frontier ap-
proaches (irrespective of the unidirectional/spherical search
volume method) can fail when semantically different entities
are observed through the same frontier. The top right part of
the figure emphasizes where global encoding approaches like
Sem Poses can fail to capture non-prominent objects in the
presence of a large centered entity. The illustration provides
further explanation for Sem Poses’s inability to capture
chimneys in the AbandonedCableDay scene as shown in
Figs. A.2 and 4. Finally, the bottom row illustrates how
each baseline computes its search volume. Spherical Sem
Fronts can fail to capture a distant object, with increasing
radius cubically increasing search volume. Unidirectional
Sem Fronts is highly sensitive to the mapped region topology
since it uses it to infer the semantic ray direction, and
in the illustrated case, it fails. Sem Poses fails to utilize
depth information to push the ray further onto the mapped
region boundary for better localization. In contrast with all
baselines, RayFronts is able to accurately determine the
direction of the ray and limit the search volume efficiently,
utilizing depth information if available.

Fig. A.2 visualizes the two query scenarios shown in
Fig. 4 with ground truth generated at an 80m cutoff (Highest
value that fits in our memory) for further clarity. The top
block shows search volumes for building at a particular
time step. At 20m depth sensing range, it is clear that
RayFronts achieves the best search volume, having 1.35 ×
higher SCVR than Unidirectional Sem Fronts. Spherical Sem
Fronts struggles to cast a search volume that encompasses
big objects, whereas Unidirectional Sem Fronts has some
erroneously inferred ray directions. At 0m range, both Sem
Poses and RayFronts perform similarly. Furthermore, the
bottom block shows the search volume of distant non-
prominent objects that never come into the depth sensing
range. At 0m range, Sem Poses fails to capture the semantics
and fails to reduce search volume, yielding an SCVR of 0,
whereas RayFronts provides meaningful areas to explore.

A3. OFFLINE SEMANTIC MAPPING VISUALIZATIONS

Fig. A.3 showcases open-vocabulary semantic segmen-
tation samples across different datasets, while Fig. A.4
highlights the open-vocabulary capabilities of RayFronts
by showing the segmentations of multiple long-tail classes.

A4. RAYFRONTS HYPERPARAMETERS

Table A.1 lists all the RayFronts hyperparameters and
their descriptions, Table A.2 lists the hyperparameter values
used for the online mapping evaluation, Table A.3 lists
the hyperparameter values used for the offline mapping
evaluation, and Table A.4 lists the hyperparameter values
used for the throughput analysis.
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Fig. A.1: Top left shows how RayFronts is able to avoid feature collisions through the use of multiple rays that capture distinct
semantics observed through the same frontier, where semantic frontier approaches [6], [7] fail. The top right illustrates that even with no
depth information, RayFronts dense language-aligned encoding can allow it to capture non-prominent semantics where semantic pose
approaches [8] fail. The bottom row highlights that RayFronts is the upper bound in accurately reducing search volume.

TABLE A.1: RayFronts Hyperparameter Descriptions.

parameter description
backbone Backbone model used.
resolution Input RGB and depth resolution.
gauss std (σ ) Standard deviation of the Gaussian kernel attention for the encoder.
vox size (α) Voxel size in meters.
f ronti neighborhood r Radius of the neighborhood to look at for computing frontiers.
f ronti min unobserved(minunobsrv) Min # of unobserved cells in the cell neighborhood to be considered a frontier.
f ronti min occupied (minocc) Min # of occupied cells in the cell neighborhood to be considered a frontier.
f ronti min empty (min f ree) Min # of free cells in the cell neighborhood to be considered a frontier.
f ronti subsampling Subsampling factor of the frontier grid. β = α ∗ f ronti subsampling.
f ronti subsampling min f ronti # of frontiers to lie in the coarser grid cell to be considered a frontier.
ray erosion Half size of the window to use when eroding the out-of-range mask Mt .
ray tracing Enable or disable ray tracing when propagating rays.
angle bin size (ψ) Angle bin size used to discretize and aggregate rays within a frontier.
max occ cnt Log-odds upper limit for occupancy.
max empty cnt Log-odds lower limit for occupancy.
occ observ weight How much to increment the log odds buffer with each occupied observation.
occ thickness Thickness of a projected occupied surface.
occ pruning tolerance Tolerance of log-odds value to be merged in a super voxel in the VDB map.
max dirs per f rame Max number of rays to cast per frame. (Uniformly samples to enforce).
max pts per f rame Max number of occupied points to unproject. (Uniformly samples to enforce).
max empty pts per f rame Max number of empty points to unproject. (Uniformly samples to enforce).
vox accum period How many frames should accumulate before aggregating voxels.
ray accum period How many frames should accumulate before casting and aggregating rays.
ray accum phase Ray accumulation delay to offset it from voxel accumulation.
stored f eat dim Dimension of map features. If less than encoder output, PCA is used to compress.
sem pruning period How often to prune semantic voxels using the occupancy map.
occ pruning period How often to prune the occupancy map (i.e merge large consistent areas).
prompt denoising thresh Threshold for prompt denoising when classifying voxels/rays).
prediction thresh If the softmax value was lower than this threshold, no prediction will be made.
searchvol thresh Threshold to select the intersection of multiple search volumes.
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Fig. A.2: Two query scenarios are shown with GT generated at 80m as opposed to 50m cutoff for more clarity: (1) querying for a prominent
object (i.e, Building) that enters depth range, and (2) a distant object (i.e, Chimney) that remains beyond range. Through unified dense
voxel mapping and beyond-range semantic ray frontiers, RayFronts sets the upper bound in both scenarios.



Fig. A.3: Sample visualizations of offline semantic mapping generated by RayFronts for scenes from Replica [37] (room0 and
office2), ScanNet [38](scene0050 and scene00378), and the chosen four scenes from TartanAir [34]. “RGB”, “GT” and “PRED”
refer to the RGB scene reconstruction, Ground Truth semantics, and semantic segmentation prediction by RayFronts, respectively, for
each corresponding scene. RayFronts achieves SOTA mIoU for 3D open-vocabulary semantic segmentation.

Fig. A.4: Examples of long-tail classes segmented by RayFronts across outdoor scenes from TartanAir [34]. We set the voxel size to
0.5 (50cm) for the visualizations. For each set, we present the RGB image, the corresponding 3D reconstructed view, and the classified
voxels left to right respectively. RayFronts effectively segments long-tail concepts.



TABLE A.2: RayFronts Online Evaluation Hyperparameters.

parameter value
backbone radio v2.5-l / SIGLIP
resolution 640x640
gauss std (σ ) 7.0
vox size (α) 1.0
f ronti neighborhood r 1
f ronti min unobserved(minunobsrv) 9
f ronti min occupied (minocc) 0
f ronti min empty (min f ree) 4
f ronti subsampling 4
f ronti subsampling min f ronti 5
ray erosion 32
ray tracing True
angle bin size (ψ) 30°
max occ cnt 100
max empty cnt -10
occ observ weight 100
occ thickness 2
occ pruning tolerance 2
max dirs per f rame 10000
max pts per f rame +∞

max empty pts per f rame +∞

stored f eat dim 768
prompt denoising thresh 0.5
prediction thresh 0.1
searchvol thresh 0.05

TABLE A.3: RayFronts Offline Evaluation Hyperparameters.

parameter value
backbone radio v2.5-l / SIGLIP
resolution 640x480
gauss std (σ ) 7.0
vox size (α) 0.05, 1.0
stored f eat dim 768
prompt denoising thresh 0.5
prediction thresh 0.1
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